Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Clin Virol Plus ; 3(2): 100134, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2210739

ABSTRACT

In December 2019, the Chinese Center for Disease Control (CDC of China) reported an outbreak of pneumonia in the city of Wuhan (Hubei province, China) that haunted the world, resulting in a global pandemic. This outbreak was caused by a betacoronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several of these cases have been observed in healthcare professionals working in hospitals and providing care on the pandemic's frontline. In the present study, nasopharyngeal swab samples of healthcare workers were used to assess the performance of the reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay and subsequently compared with the real-time reverse-transcription quantitative PCR (RT-qPCR) method. Thus, in this study, we validated a method for detecting SARS-CoV-2 based on RT-LAMP that can be used to diagnose these workers. The methodology used was based on analyzing the sensitivity, specificity, evaluation of the detection limit, and cross-reaction with other respiratory viruses. The agreement was estimated using a dispersion diagram designed using the Bland-Altman method. A total of 100 clinical specimens of nasopharyngeal swabs were collected from symptomatic and asymptomatic healthcare workers in Pelotas, Brazil, during the SARS-CoV-2 outbreak. RT-LAMP assay, it was possible to detect SARS-CoV-2 in 96.7% of the healthcare professionals tested using the E gene and N gene primers approximately and 100% for the gene of human ß-actin. The observed agreement was considered excellent for the primer set of the E and N genes (k = 0.957 and k = 0.896), respectively. The sensitivity of the RT-LAMP assay was positive for the primer set of the E gene, detected to approximately 2 copies per reaction. For the primer set of the N gene, the assay was possible to verify an LoD of approximately 253 copies per reaction. After executing the RT-LAMP assay, no positive reactions were observed for any of the virus respiratory tested. Therefore, we conclude that RT-LAMP is effective for rapid molecular diagnosis during the COVID-19 outbreak period in healthcare professionals.

2.
Travel Med Infect Dis ; 49: 102390, 2022.
Article in English | MEDLINE | ID: covidwho-1907826

ABSTRACT

BACKGROUND: SARS-CoV-2, the virus that causes COVID-19, is constantly mutating, leading to new variants that culminate in a temporal lineages fluctuation. B.1.1.28 lineage has been evolving in Brazil since February 2020 and originated P.1 (VOC), P.2 (VOI) and other P.Xs proposed as new variants. METHODS AND RESULTS: In this study, through the Illumina platform, we performed the whole-genome sequencing of 26 positive samples of SARS-CoV-2. Employing variant calling analysis on FASTQ reads and phylogenetic inference, we report a brief dispersion of a potentially new B.1.1.28-derived variant detected between 2021 May and June in individuals crossing the border between Brazil and Argentina, and local spread to inpatients from hospitals at the Rio Grande do Sul state capital (Porto Alegre). Besides, the Rio Grande do Sul State SARS-CoV-2 genomic epidemiological data was analyzed and showed an important B.1.1.28 peak in RS at the same period (May-June), even in the presence of a major Gamma wave. CONCLUSIONS: The emergence of a putative B.1.1.28-derived lineage was identified in travelers crossing Brazil-Argentina border representing an important peak of B.1.1.28 in RS State with a decreased in Gamma variant frequency in the same period of time.


Subject(s)
COVID-19 , SARS-CoV-2 , Argentina/epidemiology , Brazil/epidemiology , COVID-19/epidemiology , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
J Clean Prod ; 331: 130000, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1561753

ABSTRACT

The ongoing global spread of COVID-19 (SARS-CoV-2 2019 disease) is causing an unprecedented repercussion on human health and the economy. Despite the primary mode of transmission being through air droplets and contact, the transmission via wastewater is a critical concern. There is a lack of techniques able to provide complete disinfection, along with the uncertainty related to the behavior of SARS-CoV-2 in the natural environment and risks of contamination. This fact makes urgent the research towards new alternatives for virus removal from water and wastewater. Thus, this research aimed to characterize new lost-cost adsorbents for SARS-CoV-2 using Hymenachne grumosa as a precursor and verify its potential for removing SARS-CoV-2 from the solution. The aquatic macrophyte H. grumosa had in natura and activated carbon produced with H. grumosa and zinc chloride (ZnCl2,1:1) impregnation and carbonization (700 °C, 1 h) were incubated for 24 h with inactivated SARS-CoV-2 viral suspension, and then the ribonucleic acid (RNA) was extracted and viral load quantified through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technique. The results demonstrated the great adsorption potential, achieving removal of 98.44% by H. grumosa "in natura", and 99.61% by H. grumosa with carbon activation, being similar to commercial activated carbon (99.67%). Thus, this study highlights the possibility of low-cost biofilters to be used for SARS-CoV-2 removal, as an excellent alternative for wastewater treatment or watercourses decontamination.

4.
Microb Pathog ; 158: 104975, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1233541

ABSTRACT

In early December 2019, an outbreak of coronavirus disease 2019 caused by a new strain of coronavirus (SARS-CoV-2), occurred in the city of Wuhan, Hubei Province, China. On January 30, 2020, the World Health Organization (WHO) declared the outbreak a public health emergency of international concern. Since then, frontline healthcare professionals have been experiencing extremely stressful situations and damage to their physical and mental health. These adverse conditions cause stress and biochemical, hematological, and inflammatory changes, as well as oxidative damage, and could be potentially detrimental to the health of the individual. The study population consisted of frontline health professionals working in BHU in a city in southern Brazil. Among the 45 participants, two were infected with the SARS-CoV-2 virus and were diagnosed using immunochromatographic tests such as salivary RT-LAMP and qRT-PCR. We also evaluated biochemical, hematological, inflammatory, and oxidative stress markers in the participants. The infected professionals (CoV-2-Prof) showed a significant increase in the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, lactic dehydrogenase, lymphocytes, and monocytes. In this group, the levels of uric acid, triglycerides, leukocytes, neutrophils, hemoglobin, hematocrit, and platelets decreased. In the group of uninfected professionals (NoCoV-2-Prof), significant increase in HDL levels and the percentages of eosinophils and monocytes, was observed. Further, in this group, uric acid, LDH, triglyceride, and cholesterol levels, and the hematocrit count and mean corpuscular volume were significantly reduced. Both groups showed significant inflammatory activity with changes in the levels of C-reactive protein and mucoprotein. The NoCoV-2-Prof group showed significantly elevated plasma cortisol levels. To our kowledge, this study is the first to report the use of the RT-LAMP method with the saliva samples of health professionals, to evalute of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Delivery of Health Care , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL